Ground state and multiple solutions for Schrödinger–Poisson equations with critical nonlinearity
نویسندگان
چکیده
منابع مشابه
Existence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملSchrödinger equations with critical nonlinearity, singular potential and a ground state∗
We study semilinear elliptic equations in a generally unbounded domain Ω ⊂ R when the pertinent quadratic form is nonnegative and the potential is generally singular, typically a homogeneous function of degree −2. We prove solvability results based on the asymptotic behavior of the potential with respect to unbounded translations and dilations, while the nonlinearity is a perturbation of a self...
متن کاملGround States for Fractional Kirchhoff Equations with Critical Nonlinearity in Low Dimension
We study the existence of ground states to a nonlinear fractional Kirchhoff equation with an external potential V . Under suitable assumptions on V , using the monotonicity trick and the profile decomposition, we prove the existence of ground states. In particular, the nonlinearity does not satisfy the Ambrosetti-Rabinowitz type condition or monotonicity assumptions.
متن کاملGround state solutions for the nonlinear Schrödinger-Maxwell equations
In this paper we study the nonlinear Schrödinger-Maxwell equations { −∆u+ V (x)u+ φu = |u|p−1u in R3, −∆φ = u2 in R3. If V is a positive constant, we prove the existence of a ground state solution (u, φ) for 2 < p < 5. The non-constant potential case is treated under suitable geometrical assumptions on V , for 3 < p < 5. Existence and non-existence results are proved also when the nonlinearity ...
متن کاملMultiple Solutions for Semilinear Elliptic Equations with Sign-changing Potential and Nonlinearity
In this article, we study the multiplicity of solutions for the semilinear elliptic equation −∆u + a(x)u = f(x, u), x ∈ Ω, u = 0, x ∈ ∂Ω, where Ω ⊂ RN (N ≥ 3), the potential a(x) satisfies suitable integrability conditions, and the primitive of the nonlinearity f is of super-quadratic growth near infinity and is allowed to change sign. Our super-quadratic conditions are weaker the usual super-q...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2016
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2016.03.062